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Propagation of waves through a slab near the Anderson 
transition: a local scaling approach 
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Department of Physics, Bar-Ilan University, Ramat-Gan, Israel 

Received 30 May 1989 

Abstract. We use a local scaling approach to calculate the following properties near the 
Anderson transition: 

(i) the time-dependent pulse shape of the transmitted wave through a slab; 
(ii) the wavelength dependence of the intensity-intensity autocorrelation function 

(iii) the time dependence of the intensity-intensity autocorrelation function C(Af) for 

(iv) the correlation function for the memory effect. 

C(AA); 

dynamic disorder; 

Our local scaling approach is shown to be consistent with Anderson’s global scaling theory 
and yields the same scaling behaviour for the transmission coefficient. All the correlation 
functions are shown to depend explicitly on the averaged intensity pulse shape for small 
values of AA or Ar. 

1. Introduction 

Propagation of classical waves (optical or acoustical) through random media has recently 
aroused renewed interest mainly due to the prediction [ 1,2]  of the possibility of localising 
these waves. The localisation of a wave is expected to occur when the Ioffe-Regel 
condition [3] is obeyed, namely, when Kl = 1, where K = 2n/A is the wave number of 
the wave, A the wavelength and 1 the elastic transport mean free path. Until now the 
Ioffe-Regel condition was achieved [4-61 only for quantum waves (electrons) and indeed 
for strong disorder a metal-insulator transition was widely observed [7]. Experimentally 
[8,9] it was found that below some critical disorder the electron diffusion constant 
(extracted from the conductivity) vanishes with a critical exponent v = 1 or v = 1/2. 
This non-universality behaviour is believed [6,10,11] to be a consequence of the long- 
range electron-electron interactions which strongly affect the diffusion constant in the 
presence of disorder. A pure localisation transition, which is termed an Anderson 
transition, is extremely difficult to observe due to the effects of electron-electron 
interactions [ 121. Therefore, localisation of classical waves which are free from particle- 
particle interactions have the potential of serving as a decisive test for the nature of the 
Anderson transition. The realistic conditions for a particular material to show classical 
localisation was recently studied intensively [ 13-18]. The most widely used theoretical 
treatment of the Anderson transition is the one-parameter scaling theory [19]. Its main 
predictions are a universal critical exponent v = 1 and a scale-dependent diffusion 
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constant D = D o ( I / L )  (for a three-dimensional system), where L is the length of the 
system in a cube geometry. Experimentally, both of these predictions are difficult to 
observe [ 6 , 8 , 9 ]  for electron systems. The electron-electron interactions affect both 
predictions. There are materials which show a critical exponent v = 1/2 and the length 
dependence of D as deduced from its temperature dependence is also not universal [ 121. 
On the theoretical side, calculations [20,21] of higher moments of the conductance 
seem not to follow a one-parameter scaling theory. It is therefore hoped that detailed 
experiments on optical systems may clarify the nature of the Anderson transition. Recent 
optical experiments [22] report an impressive small free path, almost equal to the Ioffe- 
Regel limit. In order to enable specific predictions for various optical properties near 
the Anderson transition, we use the scaling theory to calculate these properties. In 
particular, we calculate: (i) the time dependence of transmitted pulses; (ii) the wave- 
length dependence of the static intensity autocorrelation functions; (iii) the time depen- 
dence of C(At )  for dynamic disorder, and (iv) the memory effect. 

In order to motivate future experiments, we use the slab geometry. We hope that 
our specific predictions will serve as a guide to probe out the optical Anderson transition 
and to check the validity of the scaling theory. 

2. The scaling theory of the optical Anderson transition 

The scaling theory for the electron conductance resulted in a scale-dependent diffusion 
constant 

for a cube of size L and is the correlation length [23] 

above the transition and the localisation length below the transition [19] .  It is easy to 
show that for a slab geometry, equations (1) and ( 2 )  still hold where L is now the width 
of the slab. 

Using (l), Anderson predicted [2]  that the averaged transmission coefficient of a 
wave near the transition will change from T = I/L in the weak-disorder limit (1 S A )  to 

T = (1/L)2 L < E  ( 3 )  

in the strong-disorder limit, 1 = A. 
John [ l ]  was the first to stress the importance of absorption near the optical Anderson 

transition. Later, Anderson predicted [2]  that in the presence of absorption the trans- 
mission coefficient will be given by 

T = exp[ - L/(3La)] (4) 

where La is the absorption length given by La = (1*1J1I3 and 1, is the inelastic mean free 
path. 

The advantage of studying optical (or acoustical) waves is the possibility of measuring 
local intensities and their sensitivity to external changes, such as the wavelength or the 
direction of the incident wave. These two properties (among many others) depend on 
the inference between different Feynman trajectories. Both of these properties were 
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studied intensively in the weak-disorder limit. The first is the intensity-intensity auto- 
correlation function [25-281 at a given point as a function of the wavelength change 
C(AA) and the second property is the memory effect [29]. 

When the nature of diffusion is changed near the Anderson transition, we expect 
different behaviour of these properties. We need a scaling theory for local properties 
which cannot be extracted from the global scaling property of the diffusion constant as 
given by equation (1). In the weak-disorder limit, diffusion theory was very successful 
in accounting for many of the observed interference phenomena. These include the 
coherent backscattering for different geometries [30-341 , the dynamic autocorrelation 
function C(At)  [35-401 , the static autocorrelation function C(AA) [25-281 the diffuse 
transmitted pulse shape [41] and the memory effect [29, 42, 431. These effects were 
calculated in q space using a diagrammatic approach or in real space using the concept 
of interference between different Feynman trajectories. Both approaches were found 
to agree [27,40,43]. 

We use here the real space approach and modify the previous approaches by using 
anomalous diffusion. The diffusion of a wave packet near the transition for L < E is 
modified to obey 

This is consistent with scaling theory since the time needed to diffuse across the sample 
is now t - L3,  which means that D - 1/L. Thus, for a given separation in space, the 
length of the Feynman path connecting two points is much larger near the transition. 
This property must modify the interference phenomena which become more sensitive 
to phase changes. 

We therefore assume that the average intensity of the wave obeys a diffusion equation 
even near the Anderson transition, 

where Z(n, t )  is the ensemble averaged intensity at positionP from the incident boundary 
at time t. The diffusion constant is now time-dependent and from (5) it follows that 

(X2)  = at213 (5) 

D(t)V2Z(i ,  t )  = a Z ( i ,  t ) / d t  (6) 

[ 44-46] 

where z is the elastic scattering time I/C and D o  = 4Cl. Equation (7) by itself is not 
sufficient to produce the correct scaling behaviour as given by (3). Moreover, it leads to 
an unphysical divergence in T .  The key point is to specify the boundary conditions self- 
consistently. In the weak-disorder limit, the solution to the Milne equation is made [47] 
to coincide with the solution of the diffusion equation if one assumes that the wave exits 
the slab at a distance a from the surface where a is given by 

where, for a three-dimensional [48] system, A = 0.714. We claim that a must be scale- 
dependent near the transition. In the weak-disorder limit, the transmission can be 
extracted from the averaged intensity at X = L - a and this leads to 

Near the transition we replace D o  in (8) by D ( L )  as given by (1) and this leads to 

a = 3(1 + A)D,/C (8) 

T = a / L  (9) 

T = ( l + A )  - u2 
in agreement with Anderson's prediction in (3) which was obtained for A = 0. 
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Figure 1. The total transmission, T ,  for 
different values of the slab width L.  The 
dots correspond to Tcalculated by (14) for 

was taken to be e = lo4 1. 
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For the properties we calculate in this paper, we need the time-dependent solution 
of (6). The boundary condition (8) must now be modified to 

a(r) = 3(1 + A ) D ( t ) / C  (11) 
where D(t) is given by (7). This means that each Feynman path will leave the sample at 
a different plane. If the photon spends more time in the sample, its diffusion constant is 
reduced and therefore will leave the sample closer to the boundary. This idea was 
introduced [45] to calculate coherent backscattering near the Anderson transition. Here 
we show that (11) is consistent with Anderson's results as given by (3) and (4). We 
next use this approach to calculate C(AA) and the memory effect near the Anderson 
transition. 

3. Time-dependent transmission 

We now calculate for a slab geometry the time dependence of the transmitted wave 
for an initial injected narrow pulse. The time dependent transmission is given by I ( x  = 
L - a(t), ( t) .  Therefore, we have to calculate Z(x, t)  which solves the diffusion equation 
(6) at a distance a(t)  from the boundary as given by (11). This leads to 

2 "  113 3 
L n = l  

T(t) = - (-l)n+l sin2 (?a ( 4 )  ) exp ( - ? D o  (:I2 r1/3t2/3) 

for L < 5. Summing up all terms, we get for t < r1 = E3/C12 

where O 4  is the theta function. 
We now calculate the total transmission T 

T = lox T(t) dt 

where T(t) is given by (13). In figure 1, we plot T as a function of L and find results 
consistent with those of Anderson, namely, for L < 5,  T (Z/L)2. 
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Figure 2. The total transmission for an 
absorbing slab. The dots correspond to Tabs 
calculated by (16) for several values of L.  
The absorption length Labs = 4.64 I ,  the 
correlation length E = lo4 1. The slope of 
the line is -lln(TBbs)/L = 3.02 which is 
equal to 2/3L,,, as predicted in equation 
(17). 

Figure 3. The transmission T(t )  as a func- 
tion of time f .  The dashed curve is T ( f )  for 
normal diffusion. The full curve is T(t)  for 

1 anomalous diffusion where the correlation 
length is = lo4 1. The inset is T(t)  for the 

0 0.4 0.8 1.2 1.6 2 anomalous diffusion plotted on a different 
0 ' ' 

( c / /  1tx10'  scale. 

We now include absorption effects. Absorption will modify the diffusion (6) by 
adding a term -Z@, t)za where z, is the absorption time. This will modify T(t) in (13) to 

Tabs(t) = exp(-t/ta>T(t). (15) 
The total transmission in the presence of absorption is given by 

In figure 2, we plot Tabs as a function of L and indeed get the Anderson prediction 

Tabs cc exP("/jLa) E >  L >  La (17) 
where La = (Z21~)''3. For L < La < f ,  we get T = (l /L)2.  

We therefore stress that the time-dependent transmissions T(t) or Tabs(t) are con- 
sistent with the scaling hypothesis. This provides a new approach to verifying the scaling 
theory by measuring the transmitted pulse shape as a function of time. The pulse shape 
of T(t)  as given by (13) is anomalous as is shown in figure 3. Thus, the advantage of using 
classical waves is that one can measure T(t) directly and not just the total transmission 
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Figure 4. The transmission T(t)  for dif- 
ferent values of the slabs length L .  The 
correlation length E = lo4 1. The full curve 
corresponds to L = 20 1. The dotted curve 
corresponds to L = 40 1 and the dashed 
curve to L = 60 1. A triangle marker was 
set on the maximum of each curve to 
denote t,,, for each L.  t,,, is proportional 
to L3. 

Figure 5.  t,,, for different values of the slab 
length L.  The correlation length 5 = 5 1. 
For L 9 E ,  t,,, is proportional to L2.  For 
L - 8 there are deviations from that 
behaviour. 

T.  To obtain T( t ) ,  it is of course not sufficient to know the scale dependence of the 
diffusion constant (as given by (1)); rather, one needs to know D(t)  as given by (7). The 
asymptotic form of T(t)  near the transition is given by 

T(t+ E) ( i / t 2 / 3 )  exp[ - + D , ( X / L ) ~ Z ~ / ~ ~ * / ~ ]  ( 1 8 )  
Note that T(t)  falls off much slower than in the weak disorder limit, where 
T(t+ x )  exp[ - Do(n /L)2] .  Moreover, the maximum of T(t)  is delayed. It is this delay 
time which can signal in an experiment the onset of an Anderson transition. The time 
t,,, for which T( t )  reaches its maximum scales differently with L near the transition. In 
the diffusive region, I P A ,  t,,, = L2/Do. In the anomalous diffusion regime for which 
1 = A ,  Do must be replaced by D ( L )  = D,(I/L) and we therefore expect 

t,,, = 3L3/CA2 (19)  

t,,, = 3L25/CA2 (20) 

For L > g, we expect 

In figure 4, we plot T(t)  for different values of L(5  > L ) .  
In figure 5 ,  we plot tmax as a function of L as extracted from T(t)  which is given by 

(13). We see a crossover from an L 3  dependence for L = E .  In the case of absorption, 
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Tabs(t+ m) cc exp( -t/z,) and this asymptotic form is similar to the asymptotic form in 
the non-anomalous regime. In this case, Tabs(t) is not a sensitive probe of anomalous 
diffusion. Thus, a significant change in the optical properties will be observed only for 
extremely strong disorder when the localisation length becomes smaller than L,. 
This restricts the observability of the Anderson transition to stronger disorder. Thus, 
absorption is a real obstacle in identifying an Anderson transition. For optical systems, 
Genack and Drake [22] succeeded in producing a short mean free path 1 -- A/n for T, 
spheres in air. However, they have found strong absorption effects and concluded that 
L, = 4L. In this case, anomalous diffusion is completely suppressed since L,  < L. The 
diffusion constant in this case is also enhanced from D = D,(l/L) by a factor (LIL,). 
Thus, absorption for electro-magnetic waves acts to smear the transition in the same 
way as finite temperatures for electron systems. The ideal experiment for testing the 
nature of the Anderson transition must produce a system for which K1- 1 and yet the 
absorption is small, at least in the sense that the system remains mesoscopic, L, > L. 
For a mesoscopic system, anomalous diffusion is the main characteristic feature of the 
Anderson transitiori within the framework of a one-parameter scaling theory. 

4. Wavelength dependence of the intensity-intensity autocorrelation function C(AA) 

The normalised intensity-intensity autocorrelation function C(AA) is given by 

C(AA) = ((Z(A)Z(A + AA)) - (Z(A))(Z(A + A%)))/(Z(L))2 (21) 

C(AA) was studied intensively in the strong disordered limit [49-521 (especially for one 
dimensional systems) and in the weak-disorder limit [24-281. In particular, it was 
demonstrated [27] that the real-space approach, in which C(AA) is aresult of interference 
between different Feynman paths with different phases due to the wavelength change 
AA, leads to results identical to the diagrammatic [25,26] approach and in excellent 
agreement with recent experiments [22,24]. In the real-space approach, C(AA) is given 
~ 7 1  by 

C(AA)= z W N e x p  
I N  

This is obtained within the factorisationapproximation [25] in which 

(Z(A)Z(A + AA)) - (Z(A))(Z(A + AA))= I(E(A)E*(A+ AA))I2 

In the weak-disorder limit, this approximation was recently checked numerically [28] 
and was found to be excellent for C(AA) at a given point. This approximation, however, 
is not valid near the transition due to strong amplitude correlations. Nevertheless, 
one can still use a heterodyne technique [46] to measure directly the electric field- 
electric field correlation function (E(w)E*(w + Aw)) where w is the frequency and 
Aw = -(AA/A)w. In the weak-disorder limit, we get from (22) 

2 

C(Aw) = I(E(w)E*(w+Aw))12 = !J^dre'""'T(t)! (23) 

noting that WN = T(t). 
The important question is whether (23) also holds near the transition when T(t) is 

replaced by the anomalous pulse shape as given by (13). We show that (23) holds only 
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for Am < D01/f3. Generally, we may write for an exit point x = L - a,  where a is given 
by (819 

E ( w )  = e-"'E,(t) d t  I 
which leads to 

(E(w)E*(w + Am)) = i eiAW'(E,(t)E:+A,(t)) dt  (25)  

Near the transition E,, A, differs significantly from E,only for Ao > D ( L ,  f ) / f 3  where 
D ( L ,  E )  is given by (1). For Am < D ( L ,  f ) / f 3 ,  we may approximate E,+A, by E, and 
(25) then coincides with (23). In this regime, we may obtain the scaling behaviour of 
C(Ao) from T(t). For L < f ,  the Feynman trajectories smaller than f 3 / 1 2  obey anom- 
alous diffusion. For t 3 L3/12C, T(t) scales as T(t'i3L-') which leads to 

! 2  
C(Aw) - 1 / dx  T(x)  eiAwL3x 

which leads to C(AwL3). We have calculated the values of A o  which correspond to 
C(Aw) = 0.9 and indeed find that A u  l /L3 .  For L > f ,  C(Ao) scales differently. In 
this regime most Feynman trajectories obey normal diffusion but with a renormalised 
diffusion constant Dol / f .  For t 3 c3/12C, T(t) scales as T(t/LZf), which implies that 
C(Aw) scales as C(AoL2f).  This scaling behaviour of C(Aw) is valid only for Aw < 

As we reach the transition, f + and the interesting region becomes Am > D01/f3. 
In this regime (23) is not valid. We calculate C(Aw) in this regime diagrammatically by 
using the following ladder propagator 

D01/f3. 

L ( q ,  A o )  = (4nC/S212)(D(q, Am) - iAo)  

D(q ,  Am) = Do(Aml/C)1/3  

(26) 

(27) 

where D(q ,  Ao)  is given by 

q < l / fand  A m  > D01/f3 

For Am < D01/f3, D(q ,  Am) is independent of A o  and is given by 

Thus, A o  < D01/f3,  D(q ,  A o )  is independent of A o  and we get exactly the same results 
as those that follow from (23). For Aw > D01/f3, we know L ( q ,  Ao) only for q < 1/f 
which yields C(Ao) for L > f .  Here, unlike in the region where A m - +  0, L ( q ,  Ao)  is 
independent on f .  Using equations (26)-(27), for L > f we get for the asymptotic form 
for C(Aw) 

C(Aw) = A ( L ( A w ) ' / ~ ) - '  exp(-BL(Aw)'l3) A o  % D01/ f3  (29) 

where A = (3fi/412)(n/oA12)-'/3 and B = ( l / t /z)(3/Z2C)1/3.  Thus, we see that 
C(L ,  Am) scales as C(L(Ao)'13) for L > f and A o  % D01/f3. This behaviour can be 
understood asfollows. For A o  % D0Z/f3, only short Feynman trajectories are important 
and contribute to C(Aw). For short trajectories the slab geometry is not effective in 
cutting off the trajectories because of the boundaries. Thus, we expect that C(Aw) will 
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Table 1. The different scaling results for C(Ao). 

A W  0~11g3 AU > 0 ~ 1 1 ~ 3  

L < E  C( A o  L3) 
L > E  C( AwL2g) C( A w‘/~L) 

be similar to that obtained for a point source at a distance R from the source when R is 
replaced by L.  For a point source for Aw %- D01/g3, one can define a dephasing length 
LAU 

LAu = (D(Aw)/Aw)’ /~  (30) 

which is the distance a photon travels in an internal l / A w .  For a point source we know 
that C(Aw) - exp(-R/LAu). We thus claim that in this regime for a slab geometry we 
must get 

C(Aw> cc exp(-LIL,,) (31) 

For Aw % D01/E3, we must use D ( A o )  from (27) which yields LA, = ( C l * / h ~ ) ” ~ .  
Inserting this L A c o  in (31) leads to the scaling behaviour which we have found dia- 
grammatically and is given by (29). 

We summarise in table 1 our scaling results for C(Aw). For L > 13, we have a 
crossover from a scaling form C(AOL~E) for Aw < D01/g3 to C(L(Aw)’13) for Aw %- 
D0E/g3. For L < E ,  we know the scaling form for C(Aw) only for Aw < D0l/E3 which 
behaves as C(AcoL3). 

We now discuss quantitatively our results. We define Amo = D01/E3 which yields, 

Aoo/wo = (m3 (32) 

The half-width frequency AwHW is given by 

AwHW/wO E (1/L)3 (33) 

where wo = C/1. 
For L < f ,  AwHW > Awo and we know C,(Aw) only for Aw 4 AwHW. which means 

that C(Aco) - 1. The form of C(Aw) for which C(Aw) < 1 is not known by the present 
approach. For L > E ,  AwHW < Amo and we know C(Aw) for the entire range of Am. In 
particular, for L %- and AoHW 6 Awo, we may obtain C(Aw) from the anomalous 
transmitted pulse shape T(t)  as given by (23). In figure 6, we plot C(Aw) as a function 
of A o / o o  for L = 201 and 5 = 101. For these values, AwHW/wo = and Awc/oo  = 

C(Aw) dropped almost to zero. 
Thus, the use of (23) is justified. For comparison, we plot (curve b) C(Aw) as a function 
of A o / w o  by using the normal diffusion shape of T(t) calculated with D = Do = 8Cl. We 
see that C(Aw) in this case is much broader. This follows from the fact that C(Aw) is 
the Fourier transform of T(t) .  Near the transition, T(t) falls off much slower (see figure 
3) which yields to a much steeper dependence of C(Aw) on Am. The steeper dependence 
of C(Aw) as we approach the transition is consistent with the results of Pendry and co- 
workers [49-501 who find an extremely steep fall-off for C ( A o )  for strongly localized 
states. 

From the figure we see that for Aw/w0 - 
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Figure 6 .  C(Aw) for the transmitted wave 
as a function of Aw for L = 20 1. = 10 1. 
Curve a corresponds to C(Ao) calculated 
for an anomalous pulse shape, curve a' for 

0.4 1 a normal pulse shape with a scale depen- 
dent diffusion constant. Curve b cor- 
responds to C(Aw) for a normal pulse 
shape. For an absorbing slab where the 
absorption length La = 10 I ,  curve c cor- 
responds to the anomalous pulse shape and 

ot 0 2 4 curve c' to a normal pulse shape with a 
scale dependent diffusion constant. 

3 
0 -  
CI 

I , 0.2 - 

( / / 2  nc) Ow x lo-' 

We now include the effect of absorption by taking La = 101. For this case, C ( A o )  as 
a function of A w / o  is plotted in figure 6 (curve c). We see that C ( A o )  falls off much 
more slowly. This follows from the fact that the absorption cut-off Feynman path is 
longer than La. This leads to a much steeper fall-off of Tabs(t) and a slower fall-off for 
C(Ao) since t is a Fourier transform of Tabs(t). 

We now compare our results with an approximate approach in which we calculate 
C(Aw)  by using the normal pulse shape T(t) (as given in the weak-disorder limit) but 
with a scale-dependent diffusion constant 

Such an approach was used [22] recently to analyse the experiments near the optical 
Anderson transition. Curve a' in figure 6 represents the case L = 20 I, = 10 I and L,  = 00. 

We see that this approach overestimates C(Aw)  for Am < AmHw. This follows from the 
fact that the correct T(t) falls off more slowly for large times. When absorption is included 
we expect similar behaviour. For La = 10 I, we plot C ( A o )  as calculated from (33) (curve 

D = Do(L-'  + L,' + E - 1 )  (34) 

C'). 
We now turn to calculate C(Aw)  for reflected light. For Am < Amc, we may write 

2- 
C ( A o )  = 11 e'AwrR(f) d t  1 (35) 

where R(t) is the pulse shape of the reflected light at a given point. Since R(t)  falls off 
much more steeply than T(t) ,  it follows that C(Aw)  for reflection decreases much more 
slowly than for transmission. The effect of the transition is to broaden R(t) further, 
yielding a steeper decrease of C ( A o ) .  It should be noted that T(t) and R(t) refer to a 
given point at both boundaries and are not related. In figure 7(a), we plot C(Aw)  as a 
function of A o / w  for anomalous diffusion (for which R(t) is calculated by D(t) as given 
by (7)). Figure 7(b) represents normal diffusion (for which R(t) is calculated with D = 
Do = 1/3CI). We see that the effect of the transition is to sharpen the decay of C(Aw) .  

5. The dynamic autocorrelation function C(At) 

Another property which generated much interest [35-401 in the weak disorder limit is 
the dynamic autocorrelation function C(At) for dynamic disorder. C(At> is defined as 

for a given change in time At. In the weak-disorder limit, two types of dynamic disorder 
C(At) = (I(t + Af)l( t ) )  - (l( t)>2)/(l( t)>2 (36) 
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Figure 7. C(Aw) for the reflected wave as 
a function of Am for L = 20 I ,  e = 10 1. 
Curve a corresponds to an anomalous 

2 4 pulse shape while curve b corresponds to a 
( 1 / 2 r r ) A ~ x r 1 0 - ~  normal pulse shape. 

were studied. In the first, the scatterers diffuse in time and each scatterer performs a 
random walk with adisplacement Grgiven by(&*(At)) cc At. The second type of dynamic 
disorder corresponds to the case where each scatterer obeys a Maxwell-Boltzmann type 
of statistics. This means that each scatterer moves ballistically with avelocity V = (2k,T/ 
M)lI2 (where Tis the absolute temperature, kB the Boltzmann constant and M the mass 
of the particle). For this type of disorder, the normalised autocorrelation function can 
also be related [35-401 to the random walk probability W ,  for executing a Feynman 
trajectory of N steps. In the continuous approximation, W,+ T(t)  where T(t) is the 
pulse shape of the transmitted waves. In the factorisation approximation, we may write 
C(At )  as 

2 

c(At) = 11 d t  T(t) exp{-[riMS(At)/A2]t/r,}1 (37) 

where to = 1/2n2C and r i M s ( A t )  = 
The behaviour of C(At )  depends on the pulse shape T(t)  and the nature of the 

dynamic disorder due to Gr(At). Near the Anderson transition, T(t)  is given by (13) in 
the absence of absorption or by (15) in the presence of absorption. We can map the 
scaling behaviour of C ( A t )  on the scaling behaviour of C(AA). We have already pointed 
out that C(Am) scales basically as C(Awt)  where tis the average time needed to execute 
a trajectory of length Ct. The scaling behaviour of C(At )  can be deduced from C ( A m )  
by replacing Am by r i M s ( A t ) .  Thus C ( r i M s ( A ) t )  will scale as C(Awt ) .  We now take, for 
example, two types of dynamic disorder. For diffusive scatterers, Y i M S  cc At, and the 
scaling of C(Amt)  is identical to C(At  1 t ) .  Thus, the scaling behaviour of C(At)  for the 
first case studied (see table 1) may be obtained from C(Am)  by simply replacing Am by 
At. For the second type of dynamic disorder, rkMS ( A t ) 2 .  In this case, the scaling 
behaviour of C(At )  can be obtained from C(Am)  by replacing Am in each equation by 
(A t )2 .  The six types of scaling behaviour of C(At )  for different regimes of At are given 
in table 2. It should be noted, however, that it would be much easier to measure C(AA) 
than C(At )  near the transition. Indeed, initial measurements of C(AA) near the transition 
were recently reported [22]. Due to strong absorption in their samples, the scaling 
behaviour as given in table 1 was not accessible. 

Finally, C(At )  for reflected waves can be obtained by replacing T(t)  by R(t) in (37). 
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Table 2 .  (a )  (&’(At)) a A f ,  diffusive scatterers, where zi = L2/4nZDi,  Di is the diffusion 
constant of the scatterers, (b) (&’(A# a At2, ballistic scatterers, where ti. = (m/3L2/2nz)”2, 
p = I/K,T. 

L < j  C(AfL3)  
L > 5  C(AfL25)  C( Af’I’L) 

L < j  C(Af2L3)  
L > 5  C ( A f 2 L 2 j )  C(Af213L) 

6. The memory effect 

The memory effect, which was recently predicted by Feng et a1 [29] and observed 
experimentally by Freund et a1 [42] connects the sensitivity of the scattered waves to a 
change in the direction of the incident wave vector Aq, = q: - qr . The autocorrelation 
function C(Aq,,  Aqf) = (Z(q , ,  q f ) ,  Z(q:, 4;)) (where Aqf = q; - q j  is the change in 
direction of the transmitted wave and similarly for Aqr) was recently calculated in real 
space by Berkovits et a1 [43]. The only relevant quantity that enters C(Aq,, Aq,) is the 
diffusive probability for a given trajectory that started at position R I  on the incoming 
boundary to arrive at point R 2  at the outgoing boundary. Since the diffusive range 
lR2 - R I /  for transmitted waves must be of order L ,  C(Aq,, Aqf) must scale as Aq,L with 
Aql = Aqfand to fall-off substantially for Aq,L < 1. Near the Anderson transition when 
anomalous diffusion sets in, the range lR2 - R I /  is expected to be smaller since longer 
trajectories are less probable. We therefore expect the memory correlation function to 
be broader. On the other hand, since the diffusion constant does not enter the expression 
C(Aq,, Aq,) for transmitted waves in the weak disorder limit, we expect only a small 
change in its shape when the transition is reached. Our expression for the memory 
correlation function near the transition is 

2 

C(Aq, ,  Aqf) = ~ A ~ ! , A ~ ~  (1 d t  T(t) exp( - ? D g ~ ’ / ’ A q ? t ~ / ~ ) )  (38) 

If figure 8, we plot C(Aqf) as a function of Aqf near the transition. We see that the 
memory correlation function is somewhat broader (dashed curve) than for normal 
diffusion (solid curve) but essentially not affected by the transition. The correlation 
function should be relevant only for a heterodyne experiment where electric field 
correlation functions are measured directly. For intensity-intensity correlation 
functions, C(Aq,, Aqf) must include all higher-order corrections which may substantially 
modify the result. These corrections cannot be handled within the scaling approach we 
use here. 

We now turn to the memory effect for backscattered waves. Here the diffusive range 
lR, - R21 must be a few mean free paths. Indeed, the explicit expression for C(Aq,, Aqf) 
in the weak disorder limit depends on the diffusion constant. Near the Anderson 
transition, L) -+ 0 and the range is smaller. This must lead to an improved memory effect. 
Namely, as E + CQ, C( Aqf) falls off much slower as a function of Aqf. This is demonstrated 
in figure 9. We see that the memory effect for backscattered waves behaves in a similar 
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8. The memory correlation function 
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Figure 9. The memory correlation function 
C(Aq)  as a function of Aq for the reflected 
wave. The full curve is for a normal pulse 
shape, while the broken curve is for the 
pulse shape when 5 = lo4 1. The slab width 
L = 20 I .  

manner to the coherent backscattered peak which becomes broader near the transition 
[45]. Indeed, it was recently pointed out [53] that the correlation function C(Aqf) is 
intimately related to the form of the enhanced coherent background peak. 

7. Summary 

We have used a local scaling approach to calculate the ensemble averaged pulse 
shape function T(t) for waves transmitted through a slab. We have shown that the total 
transmission coefficient T as deduced from our T(t) is consistent with the global scaling 
approach introduced by Anderson2. We then relate the intensity-intensity auto- 
correlation function C(AA) to the pulse shape T(t). It is shown that three different scaling 
forms emerge which we have summarised in table 1. 

We have also calculated the dynamic autocorrelation function C(At) near the Ander- 
son transition. The scaling behaviour of C(At) is also related to the functional form of 
the transmitted pulse shape T(t). We have given a simple mapping between C(At) and 
C( AA) in which the scaling behaviour of C( At) can be obtained from the scaling behaviour 
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of C(AA). This is summarised in table 2. We have also studied C(At)  and C(AA) for 
reflected waves near the transition. 

Finally, we have studied the effect of the Anderson transition on the memory effect. 
it is shown that the transition broadens the memory correlation function. Although this 
effect is quite small for transmitted waves, it is dramatic for backscattered waves. 
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